
UNIT-I: Operating Systems and Memory
Management

Contents

1 Introduction to Operating Systems . 2

2 Types of Operating Systems . 2

2.1 Simple Batch Systems . 2

2.2 Multi-programmed Batch Systems . 2

2.3 Time-Sharing Systems . 2

2.4 Personal Computer Systems . 3

2.5 Parallel Systems . 3

2.6 Distributed Systems . 3

2.7 Real-Time Systems . 4

3 Memory Management . 4

3.1 Background . 4

3.2 Logical vs. Physical Address Space . 4

3.3 Swapping . 4

3.4 Contiguous Allocation . 4

3.5 Paging . 5

3.6 Segmentation . 5

4 Virtual Memory . 5

4.1 Demand Paging . 6

4.2 Page Replacement . 6

4.3 Page Replacement Algorithms . 6

4.4 Performance of Demand Paging . 6

4.5 Allocation of Frames . 7

4.6 Thrashing . 7

4.7 Other Considerations . 7

1

Operating Systems and Memory Management

1 Introduction to Operating Systems

An Operating System (OS) is system software that manages computer hardware and
software resources, acting as an intermediary between users and hardware to ensure
efficient resource utilization and user-friendly interaction.

2 Types of Operating Systems

2.1 Simple Batch Systems

Early systems where jobs were collected and processed sequentially in batches without
user interaction. Jobs were submitted via punch cards or tapes and processed one at a
time.

• Features: Job scheduling, minimal resource sharing, sequential execution.

• Example: IBM 1401.

Diagram:

Card Reader Job Queue CPU Printer
Jobs Process Output

figureSimple Batch
System: Sequential job processing from card reader to printer.

2.2 Multi-programmed Batch Systems

Multiple programs are loaded into memory and executed concurrently, improving CPU
utilization by switching between programs when one waits for I/O.

• Features: Job scheduling, memory management, CPU multiplexing.

Diagram:

Memory(Prog 1, Prog 2)Scheduler CPU
Switch Execute

figureMulti-programmed Batch
System: CPU switches between programs in memory.

2.3 Time-Sharing Systems

An extension of multiprogramming allowing multiple users to interact with the system
simultaneously via time-slicing.

• Features: Interactive computing, quick response times, resource sharing.

• Example: UNIX.

Diagram:

2

Operating Systems and Memory Management

User 1

User 2

CPU(Time Slices) Memory

figureTime-Sharing System: Multiple users
share CPU via time-slicing.

2.4 Personal Computer Systems

Designed for single-user environments, focusing on ease of use and responsiveness.

• Features: GUI, single-user multitasking, resource management.

• Example: Windows, macOS.

Diagram:

PC(CPU, Memory, Storage) User
GUI

figurePersonal Computer System:
Single-user system with GUI.

2.5 Parallel Systems

Use multiple processors to execute tasks concurrently, improving performance.

• Features: Symmetric/Asymmetric Multiprocessing.

• Example: Supercomputers, multi-core systems.

Diagram:

CPU 1

CPU 2

Shared Memory

figureParallel System: Multiple CPUs process tasks
concurrently.

2.6 Distributed Systems

Multiple independent computers work together over a network to achieve a common goal.

• Features: Resource sharing, scalability, fault tolerance.

• Example: Cloud computing, clusters.

Diagram:

Node 1

Node 2
Node 3

Network

Network
figureDistributed System: Nodes collaborate via network.

3

Operating Systems and Memory Management

2.7 Real-Time Systems

Designed for time-critical applications with strict deadlines.

• Types: Hard real-time (e.g., avionics), Soft real-time (e.g., streaming).

• Features: Deterministic response, high reliability, minimal latency.

Diagram:

Timeline
Task 1

Deadline

Task 2

Deadline

figureReal-Time System: Tasks with strict deadlines.

3 Memory Management

3.1 Background

Memory management controls and coordinates computer memory, ensuring efficient al-
location to processes and preventing conflicts.

3.2 Logical vs. Physical Address Space

• Logical Address Space: Addresses generated by a program (virtual).

• Physical Address Space: Actual addresses in physical memory.

• Mapping done via Memory Management Unit (MMU).

Diagram:

Logical(0x100, 0x200) MMU Physical(0x5000, 0x6000)
Map

figureLogical to Physical
Address Mapping via MMU.

3.3 Swapping

Temporarily moves processes from main memory to secondary storage to free memory.

• Use: Manages memory in multiprogramming.

• Drawback: Slow due to disk I/O.

Diagram:

RAM(Process) Disk
Swap In/Out

figureSwapping: Moving processes between RAM and
disk.

3.4 Contiguous Allocation

Each process is allocated a single, contiguous block of memory.

4

Operating Systems and Memory Management

• Types: Fixed-size and variable-size partitions.

• Issues: External fragmentation (gaps), internal fragmentation (unused space within
partitions).

Diagram:

MemoryProcess 1 Process 2Gap

figureContiguous Allocation: Processes with external
fragmentation.

3.5 Paging

Divides memory into fixed-size pages (logical) and frames (physical), eliminating external
fragmentation.

• Mechanism: Page table maps pages to frames.

• Drawback: Internal fragmentation within pages.

Diagram:

Pages(0, 1) Page Table Frames(0, 1)
Map

figurePaging: Mapping pages to frames
via page table.

3.6 Segmentation

Divides memory into variable-sized segments (e.g., code, data, stack).

• Benefits: Aligns with program structure.

• Drawback: External fragmentation.

Diagram:

Segments(Code, Data)Segment Table Physical Memory
Map

figureSegmentation: Mapping
segments to physical memory.

4 Virtual Memory

Virtual memory allows programs to use more memory than physically available by using
disk space as an extension of RAM.

5

Operating Systems and Memory Management

4.1 Demand Paging

Pages are loaded into memory only when needed, using a valid-invalid bit in the page
table.

Diagram:

Virtual Memory(Pages)Page Table RAM

Disk

Page Fault

figureDemand Paging:
Loading pages from disk on demand.

4.2 Page Replacement

Replaces an existing page with a new one when memory is full.

Diagram:

RAM(Frames) Disk(New Page)
Replace

figurePage Replacement: Swapping pages between
RAM and disk.

4.3 Page Replacement Algorithms

• FIFO: Replaces oldest page.

• LRU: Replaces least recently used page.

• Optimal: Replaces page not used for the longest time (ideal).

Diagram:

FIFO(Queue) LRU(Stack) Optimal(Future)
Replace

figurePage Replacement Algorithms:
FIFO, LRU, and Optimal.

4.4 Performance of Demand Paging

Measured by page fault rate, affected by page size, algorithm efficiency, and memory
availability.

Diagram:

6

Operating Systems and Memory Management

Time

Page Fault Rate

Curve

figurePerformance: Page fault rate over
time.

4.5 Allocation of Frames

Determines how many frames are allocated to each process (equal or proportional).

Diagram:

Process 1 Process 2

Frames
figureAllocation of Frames: Equal or proportional.

4.6 Thrashing

Excessive page faults due to insufficient memory, reducing CPU efficiency.

Diagram:

CPU Disk
Page Faults

figureThrashing: High page fault rate to disk.

4.7 Other Considerations

• Working Set Model: Tracks active pages to prevent thrashing.

• Page Size: Balances fragmentation and page table size.

• I/O Interlock: Prevents swapping pages during I/O.

• Prepaging: Loads pages before needed to reduce faults.

Diagram (Working Set Model):

Process(Working Set) Memory
Active Pages

figureWorking Set Model: Tracking active pages.

7

